IPS Overview and History
The best place to start looking at TCP/IP is probably the name itself. TCP/IP in fact consists of dozens of different protocols, but only a few are the “main” protocols that define the core operation of the suite. Of these key protocols, two are usually considered the most important. The Internet Protocol (IP) is the primary OSI network layer (layer three) protocol that provides addressing, datagram routing and other functions in an internetwork. The Transmission Control Protocol (TCP) is the primary transport layer (layer four) protocol, and is responsible for connection establishment and management and reliable data transport between software processes on devices.
Due to the importance of these two protocols, their abbreviations have come to represent the entire suite: “TCP/IP”. (In a moment we'll discover exactly the history of that name.) IP and TCP are important because many of TCP/IP's most critical functions are implemented at layers three and four. However, there is much more to TCP/IP than just TCP and IP. The protocol suite as a whole requires the work of many different protocols and technologies to make a functional network that can properly provide users with the applications they need.
TCP/IP uses its own four-layer architecture that corresponds roughly to the OSI Reference Model and provides a framework for the various protocols that comprise the suite. It also includes numerous high-level applications, some of which are well-known by Internet users who may not realize they are part of TCP/IP, such as HTTP (which runs the World Wide Web) and FTP. In the topics on TCP/IP architecture and protocols I provide an overview of most of the important TCP/IP protocols and how they fit together.
As I said earlier, the Internet is a primary reason why TCP/IP is what it is today. In fact, the Internet and TCP/IP are so closely related in their history that it is difficult to discuss one without also talking about the other. They were developed together, with TCP/IP providing the mechanism for implementing the Internet. TCP/IP has over the years continued to evolve to meet the needs of the Internet and also smaller, private networks that use the technology. I will provide a brief summary of the history of TCP/IP here; of course, whole books have been written on TCP/IP and Internet history, and this is a technical Guide and not a history book, so remember that this is just a quick look for sake of interest.
The TCP/IP protocols were initially developed as part of the research network developed by the United States Defense Advanced Research Projects Agency (DARPA or ARPA). Initially, this fledgling network, called the ARPAnet, was designed to use a number of protocols that had been adapted from existing technologies. However, they all had flaws or limitations, either in concept or in practical matters such as capacity, when used on the ARPAnet. The developers of the new network recognized that trying to use these existing protocols might eventually lead to problems as the ARPAnet scaled to a larger size and was adapted for newer uses and applications.
In 1973, development of a full-fledged system of internetworking protocols for the ARPAnet began. What many people don't realize is that in early versions of this technology, there was only one core protocol: TCP. And in fact, these letters didn't even stand for what they do today; they were for the Transmission Control Program. The first version of this predecessor of modern TCP was written in 1973, then revised and formally documented in RFC 675, Specification of Internet Transmission Control Program, December 1974.
Note: Note: Internet standards are defined in documents called Requests For Comments (RFCs). These documents, and the process used to create them, are described in their own topic of the section on networking fundamentals.